Dissecting the roles of the 5' exoribonucleases Xrn1 and Xrn2 in restricting hepatitis C virus replication.

نویسندگان

  • You Li
  • Daisuke Yamane
  • Stanley M Lemon
چکیده

UNLABELLED The replication of hepatitis C virus (HCV) is uniquely dependent on a host microRNA, miR-122. Previous studies using genotype 1a H77S.3 virus demonstrated that miR-122 acts in part by protecting the RNA genome from 5' decay mediated by the cytoplasmic 5' exoribonuclease, Xrn1. However, this finding has been challenged by a recent report suggesting that a predominantly nuclear exoribonuclease, Xrn2, mediates the degradation of genotype 2a JFH1 RNA. Here, we dissect the roles of these two 5' exoribonucleases in restricting the replication of different HCV strains and mediating the decay of HCV RNA. Small interfering RNA (siRNA) depletion experiments indicated that Xrn1 restricts replication of all HCV strains tested: JFH1, H77S.3, H77D (a robustly replicating genotype 1a variant), and HJ3-5 (a genotype 1a/2a chimeric virus). In contrast, the antiviral effects of Xrn2 were limited to JFH1 and H77D viruses. Moreover, such effects were not apparent in cells infected with a JFH1 luciferase reporter virus. Whereas Xrn1 depletion significantly slowed decay of JFH1 and HJ3-5 RNAs, Xrn2 depletion marginally enhanced the JFH1 RNA half-life and had no effect on HJ3-5 RNA decay. The positive effects of Xrn1 depletion on JFH1 replication were largely redundant and nonadditive with those of exogenous miR-122 supplementation, whereas Xrn2 depletion acted additively and thus independently of miR-122. We conclude that Xrn1 is the dominant 5' exoribonuclease mediating decay of HCV RNA and that miR-122 provides protection against it. The restriction of JFH1 and H77D replication by Xrn2 is likely indirect in nature and possibly linked to cytopathic effects of these robustly replicating viruses. IMPORTANCE HCV is a common cause of liver disease both within and outside the United States. Its replication is dependent upon a small, liver-specific noncoding RNA, miR-122. Although this requirement has been exploited for the development of an anti-miR-122 antagomir as a host-targeting antiviral, the molecular mechanisms underpinning the host factor activity of miR-122 remain incompletely defined. Conflicting reports suggest miR-122 protects the viral RNA against decay mediated by distinct cellular 5' exoribonucleases, Xrn1 and Xrn2. Here, we compare the roles of these two exoribonucleases in HCV-infected cells and confirm that Xrn1, not Xrn2, is primarily responsible for decay of RNA in cells infected with multiple virus strains. Our results clarify previously published research and add to the current understanding of the host factor requirement for miR-122.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Hepatitis C Virus Genome Replication by Xrn1 and MicroRNA-122 Binding to Individual Sites in the 5' Untranslated Region.

UNLABELLED miR-122 is a liver-specific microRNA (miRNA) that binds to two sites (S1 and S2) on the 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome and promotes the viral life cycle. It positively affects viral RNA stability, translation, and replication, but the mechanism is not well understood. To unravel the roles of miR-122 binding at each site alone or in combination, we ...

متن کامل

XRN1 Stalling in the 5’ UTR of Hepatitis C Virus and Bovine Viral Diarrhea Virus Is Associated with Dysregulated Host mRNA Stability

We demonstrate that both Hepatitis C virus (HCV) and Bovine Viral Diarrhea virus (BVDV) contain regions in their 5' UTRs that stall and repress the enzymatic activity of the cellular 5'-3' exoribonuclease XRN1, resulting in dramatic changes in the stability of cellular mRNAs. We used biochemical assays, virus infections, and transfection of the HCV and BVDV 5' untranslated regions in the absenc...

متن کامل

Comparison of PEG Interferon Loaded and non-Loaded Iron Oxide Nanoparticles on Hepatitis C Virus Replication in Cell Culture System

Background and Aims: Iron oxide nanoparticles are among the most effective tools which can replace current medical techniques for diagnosis and treatment of various diseases. Hepatitis C infection is one of the main health problems in the world, affecting around 3% of the world's population. This infection can develop into liver cirrhosis and liver cancer over the time in 80% of patients. In t...

متن کامل

Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors.

The eukaryotic defense response posttranscriptional gene silencing (PTGS) is directed by short-interfering RNAs and thwarts invading nucleic acids via the RNA slicing activity of conserved ARGONAUTE (AGO) proteins. PTGS can be counteracted by exogenous or endogenous suppressors, including the cytoplasmic exoribonuclease XRN4, which also degrades microRNA (miRNA)-guided mRNA cleavage products bu...

متن کامل

Chapter 7 5 0 - 3 0 Exoribonucleases Jeong

The 50-30 exoribonucleases have important functions in RNA processing, RNA degradation, RNA interference, transcription, and other cellular processes. The Xrn1 and Xrn2/Rat1 family of enzymes are the best characterized 50-30 exoribonucleases, and there has been significant recent progress in the understanding of their structure and function. Especially, the first structural information on Rat1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 89 9  شماره 

صفحات  -

تاریخ انتشار 2015